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MCB 5472 Lecture #4:
Probabilistic models of homology: 

Psi-BLAST and HMMs
February 17, 2014

From last week:

• BLASTp searches find homologs to a single 
sequence in a sequence database

• Highest score to sequences best matching the 
query

• Corollary: lower scores to distant sequences still 
matching the query

Finding all homologous 
sequences using BLASTp
• In an ideal world (e.g., highly conserved 

sequences) a simple BLASTp search would 
recover all homologs of a single query 
sequence

• Simply accept all sequences above some E-value 
cutoff

• E-values can have a steep decline

Sequence, ranked by decreasing similarity

Sequence
similarity

Nice but…

• Assumes the query sequence perfectly 
represents all homologs

• False because:
• Substitutions may be from lineage-specific biases 

and not conserved in homologs more generally, 
biasing search towards closer relatives

• Conservation is always incomplete: the query may 
not contain conserved positions present in most 
other homologs

• Sequences close to a hard E-value cutoff can 
be easily excluded/included depending on 
search bias

Shown another way Sensitivity vs specificity

• Trade off between minimizing false-negative 
detection (sensitivity) and false-positives 
(specificity)

• A common trade-off in bioinformatics

• BLASTp is designed to maximize sensitivity 
• Specificity can be low – left to the user to cull out 

the false-positives
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Net result:

• Divergent homologs are hard to detect

• Because they are close to typical E-value 
cutoffs, any bias can easily lead to them being 
excluded

• Discriminating between false- and true-
positives can be problematic 

• Requires manual examination

• Finding deep homology is hard!

Better: use multiple queries 
representing all homologs
• Option 1: Run multiple individual BLASTps

• Still easy to bias – “unknown unknowns”

• Option 2: Make a statistical model of sequence 
conservation amongst all homologs and use 
that to find different relatives

• Diverse input sequences removes and averages 
out lineage-specific biases

PSI-BLAST

• “Position-Specific Iterated BLAST”
• Works only for proteins
• Uses BLASTp to create a “position-specific 

score matrix” (PSSM)
• Smith Waterman global alignments are an option 

for the command line but not the web (slower, more 
accurate)

• Uses matrix for subsequent database searches
• Matrix updated on each iteration

• Bias reduced each time
• Sensitivity increased towards distant homologs
• False-positives reduced by model refinement

PSI-BLAST: step #1

• First iteration: standard BLASTp using a single 
sequence

• All homologs above a specified E-value 
threshold kept to make PSSM

• Can be specified via parameters, manually edited 
on NCBI website implimentation

NCBI web implimentation NCBI web implementation

Specific PSI‐BLAST options
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NCBI web implementation NCBI web implementation

Select to start using first hits for PSSM next iteration

PSI-BLAST: step #2

• Makes (rough) multiple sequence alignment for 
the selected BLASTp results

• All hits aligned to the query
• Not a true multiple sequence alignment
• Possible to input an externally generated alignment 

via terminal version (but not web)

• Alternative at terminal: Smith Waterman global 
pairwise alignments

• Not available for web
• Slower but more accurate

PSI-BLAST: step #3

• Use sequence alignment to create Position-
Specific Scoring Matrix (PSSM)

• PSSM:
• Unique substitution matrix for each sequence 

alignment column
• Extra column for gap penalty

• Matrix is 21 x [query length] vs. 20 x 20 for normal matrix

• Scores merge standard distance matrix with 
position-specific frequencies from 1st iteration, 
weighted by sequence similarity

Example PSSM

Gribskov et al. (1987) PNAS 84: 4355–4358

PSI-BLAST: step #4

• Query reference database using the PSSM
• Recall: BLASTp looks for 2-3 amino acid words 

similar to the query sequence above some 
threshold score calculated from the distance matrix

• An equivalent calculation can be performed using 
the PSSM; find possible words having a score > the 
same threshold

• Subsequent BLAST steps are the same: extend 
matching words, recalculate with gaps, calculate 
statistics

• E-values now reflect similarity to the query profile, 
not any individual sequence
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PSI-BLAST: step #5

• Perform as many iterations as you like

• PSSM updated each time based on hits 
passing E-value threshold on the previous 
iteration

• Sequence-specific bias reduced each time as 
the PSSM is adjusted to reflect homolog in the 
entire input set

CrtR protein 1e-50 threshold

Iteration Hits > 1e‐50 Notes

1 151

2 215

3 258 Query not top hit, 
top E‐value != 0.0

4 271

5 271

6 271

Model corruption

• If a non-homologous sequence is included 
during model construction, can bias the model 
away from true homologs

• With subsequent iteration, model can be made 
completely useless

• Using a higher E-value cutoff can ameliorate

• On web can examine results and limit selection
• Can’t do this in high-throughput at terminal

Command line PSI-BLAST

• Part of BLAST+ package so same basic 
parameters apply

• Additional flags:
-num_iterations [number]
-out_pssm [filename]
-out_ascii_pssm [filename]
-comp_based_stats 0 # required

e.g., [jlklassen@bbcsrv3 ~]$ psiblast –query 
test.faa –db all.faa –num_iterations 3 –out 
test_vs_all.psiblast –out_ascii_pssm pssm.out
–comp_based_stats 0

Starting PSI-BLAST with pre-
computed PSSM
• Create PSSM using PSI-BLAST with 
-out_pssm flag (not -out_ascii_psm)

• Use –in_pssm flag instead of –query

• e.g., [jlklassen@bbcsrv3 ~]$ psiblast
–in_pssm pssm.out –db all.faa

–num_iterations 3 –out 

test_vs_all.psiblast

–comp_based_stats 0

RPSBLAST

• PSI-BLAST queries a sequence database with an 
individual PSSM

• RPSBLAST does the opposite: queries an 
individual sequence with a database of PSSMs

• e.g., From NCBI’s Conserved Domain Database (CDD) 
to annotate sequences according to NCBI’s ortholog
family descriptsion

• In BLAST+, command is rpsplast+ and works 
similarly to other BLAST+ commands except –db
is now PSSMs, not sequences

• Possible to make your own PSSM database but 
complicated (most people use HMMer instead)
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Beyond BLAST

• Recall that all BLAST programs are local 
alignments

• Trade-off between speed and accuracy

• FASTA: alternative package for database
• http://www.ebi.ac.uk/Tools/sss/fasta/
• Heuristics like BLAST using word matching for initial 

sequence matching
• Final alignments use Smith-Waterman global pairwise 

alignment method

• Advances in computer science and statistics on 
both fronts (i.e., better accuracy & better 
approximations)

HMMER

• HMMER is a software package similar to PSI-
BLAST, i.e., searching databases with 
homology models

• Uses HMMs instead of PSSMs
• Advantages:

• More statistically explicit models
• HMMER3 as ~fast as BLAST
• Easy to use at command line
• Can make models for DNA, RNA, protein

• Disadvantages:
• Initial alignment is always a second step
• No NCBI interface (database-specific instead)

The purpose of HMMs

• To evaluate the probability of a sequence 
matching a model

• Assumes preexisting model

• Essentially a classification problem
• Given data, how well does it fit a model?
• Given data and multiple models, which fits best?
• e.g., Does a gene belong to a gene family?

Markov Chains
• “A finite number of states connected by transitions”

http://www.ch.embnet.org/CoursEMBnet/Basel03/slides/PSSM_HMMM.pdf

Markov Chains
• “A finite number of states connected by transitions”

http://www.ch.embnet.org/CoursEMBnet/Basel03/slides/PSSM_HMMM.pdf

Transition probabilities

• The probability of moving from one state to 
another

• P(Yellow|Green) = 1
• “The probability of transitioning 

to yellow given green”

• P(Red|Yellow) = 1
• P(Green|Red) = 1
• P(Green|Yellow) = 0
• P(Yellow|Red) = 0
• P(Red|Green) = 0
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Transmission probabilities

• The probability of moving from one state to 
another

• P(C|B) = 1

• P(D|C) = 1

• P(A|D) = 1

• P(A|B) = P(vehicles turning left)

• P(A|B) = P(no vehicles turning left)

• P(B|A) = 0 etc.

A

B C

D

Hidden Markov Models

• HMMs are like Markov Chains in that they 
comprise states connected by transitions

• Difference: each state does not comprise a 
single symbol but rather a distribution of them

• e.g., a column of a sequence alignment will contain 
some frequency of A, C, G and T

• Each state can “emit” a symbol with some 
probability

Hidden Markov Models

• Known: 
• The number of states
• The transition probabilities
• The emission probabilities

• Question: how well does a sequence match the 
model?

• Evaluate the global probability by multiplying the 
probability of each step through the graph

A simplified model: 
identifying a 5’ splice site

Eddy 2004 Nat. Biotechnol. 22: 1315-1316

Three possible states: exon, 5’ 
splice site, intron

CTTCATGTGAAAGCAGACGTAAGTCA

Exon 5’ splice site Intron

EndStart E 5 I

Emission probabilities
• 5’ splice site nearly always G, occasionally A
• Exon sequence distributed uniformly
• Intron sequence is AT rich

EndStart E 5 I

P(A) = 0.25
P(C) = 0.25
P(G) = 0.25
P(T) = 0.25

P(A) = 0.4
P(C) = 0.1
P(G) = 0.1
P(T) = 0.4

P(A) = 0.05
P(C) = 0
P(G) = 0.95
P(T) = 0
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Transition probabilities
• Exon & intron can be multiple bases long

• 5’ splice site only one base long

• Exact probabilities are flexible

EndStart E 5 I

P(A) = 0.25
P(C) = 0.25
P(G) = 0.25
P(T) = 0.25

P(A) = 0.4
P(C) = 0.1
P(G) = 0.1
P(T) = 0.4

P(A) = 0.05
P(C) = 0
P(G) = 0.95
P(T) = 0

P = 1

P = 0.9P = 0.9

P = 0.1 P = 0.1P = 1

Discuss: given this sequence, 
where is the splice site?

EndStart E 5 I

P(A) = 0.25
P(C) = 0.25
P(G) = 0.25
P(T) = 0.25

P(A) = 0.4
P(C) = 0.1
P(G) = 0.1
P(T) = 0.4

P(A) = 0.05
P(C) = 0
P(G) = 0.95
P(T) = 0

P = 1

P = 0.9P = 0.9

P = 0.1 P = 0.1P = 1

CTTCATGTGAAAGCAGACGTAAGTCA

• 14 possibilities (number of “A”s and “G”s)

• “A”s are sufficiently improbable that we will not 
work them out here

EndStart E 5 I

P(A) = 0.25
P(C) = 0.25
P(G) = 0.25
P(T) = 0.25

P(A) = 0.4
P(C) = 0.1
P(G) = 0.1
P(T) = 0.4

P(A) = 0.05
P(C) = 0
P(G) = 0.95
P(T) = 0

P = 1

P = 0.9P = 0.9

P = 0.1 P = 0.1P = 1

CTTCATGTGAAAGCAGACGTAAGTCA

EndStart E 5 I

P(A) = 0.25
P(C) = 0.25
P(G) = 0.25
P(T) = 0.25

P(A) = 0.4
P(C) = 0.1
P(G) = 0.1
P(T) = 0.4

P(A) = 0.05
P(C) = 0
P(G) = 0.95
P(T) = 0

P = 1

P = 0.9P = 0.9

P = 0.1 P = 0.1P = 1

CTTCATGTGAAAGCAGACGTAAGTCA

log(P(1st)) = log(1*(0.256*0.95)*(0.1)*0.95*1*[(0.411)*(0.18)*(0.918)]*0.1) = ‐43.90

Start
trans

E
emit

E
trans

E
trans

5
emit

5
trans

E
emit

E
emit

E
trans

End
trans

log(P)

‐43.45
‐43.90

‐43.94
‐42.58
‐41.22
‐41.71

HMMs

• Given a model and input data, we can 
calculate the likelihood of any given 
classification

• Because model is fully parameterized, 
significance of each bath can be determined in 
a Baysian statistical framework

• “Posterior decoding”

Posterior decoding

• Definition: probability of chosen path divided by 
sum of the probability of all other paths

• e.g., െ41.22/ሺ െ43.90 ൅ െ43.45 ൅ െ43.94 ൅	… ሻ

CTTCATGTGAAAGCAGACGTAAGTCA log(P)

‐43.45
‐43.90

‐43.94
‐42.58
‐41.22
‐41.71

Post. 
decoding

11%
46%
28%
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Note: many non-zero posterior 
decodings

(From actual Nat. Biotechnol. paper)

Profile HMMs

• HMMs applied to multiple sequence alignments

• Each alignment column is a state
• Emission probabilities based on sequence 

conservation in the alignment weighted by 
sequence similarity

• A separate series of states exists for gaps
• Emission probabilities encompass gap extension

• Significance of sequence matching model 
calculated similarly to our much simpler 
splicing example

HMMER3

• Software package for making and using profile 
HMMs

• Like BLAST+, can use own models or 
download from others

• Approximately as fast as BLAST+ (previous 
versions were not)

• http://hmmer.janelia.org/

hmmbuild & hmmpress

• Input: multiple sequence alignment
• 2 steps: (i) make HMM; (ii) compress for database 

searching (like makeblastdb)
hmmbuild <output file> <input MSA>
e.g., hmmbuild test.hmm test.muscle.faa
hmmpress <input HMM>
e.g., hmmpress test.hmm
Creates: test.hmm.h3m test.hmm.h3i 

test.hmm.h3f test.hmm.h3p
• Requires predefined input set
• Requires sequence alignment
• No simple iterative model updating option like PSI-BLAST

• Have to rerun alignment and hmmbuild instead

hmmscan

• Actual search function (cf. rpsblast) 
comparing sequences to profiles

hmmscan –o <output> <HMM name> 
<query seq>

e.g., hmmscan –o hmmscan.out test.hmm
test.faa
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HMMER long output

• Two outputs: one for complete sequence, one 
for domains

• E-value and score analogous to BLAST output

• “bias”: score adjustment based on 
compositional bias in the database

• Domains: 
• i-Evalue: likelihood of hit in entire database
• c-Evalue: likelihood of hit in hits
• Domain boundaries
• Domain alignments

hmmscan domain table output 
format
hmmscan –domtblout <domain table 
output> <HMM name> <query seq>

e.g., hmmscan –domtblout
hmmscan.domtblout test.hmm test.faa

Other useful HMMER 
functions (working similarly)
• hmmsearch: search models vs. sequences (cf. 
PSI-BLAST)

• hmmalign: align sequences to HMM

• nhmmscan: align nucleotide sequences to 
nucleotide HMM

• hmmbuild autodetects input format or can be 
specified 

Database sources

• Many different databases supply HMMs for 
various purposes

• Pfam: protein domains in sequences
• Rfam: RNA annotation in genomes
• Interpro: integration of different orthology methods

• Uses HMMs and simpler motif matching cf. regular 
expressions

• Each has its own website, not integrated like 
NCBI


